Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning (1907.09620v3)

Published 22 Jul 2019 in cs.AI, cs.LG, and cs.RO

Abstract: Many animals, and an increasing number of artificial agents, display sophisticated capabilities to perceive and manipulate objects. But human beings remain distinctive in their capacity for flexible, creative tool use -- using objects in new ways to act on the world, achieve a goal, or solve a problem. To study this type of general physical problem solving, we introduce the Virtual Tools game. In this game, people solve a large range of challenging physical puzzles in just a handful of attempts. We propose that the flexibility of human physical problem solving rests on an ability to imagine the effects of hypothesized actions, while the efficiency of human search arises from rich action priors which are updated via observations of the world. We instantiate these components in the "Sample, Simulate, Update" (SSUP) model and show that it captures human performance across 30 levels of the Virtual Tools game. More broadly, this model provides a mechanism for explaining how people condense general physical knowledge into actionable, task-specific plans to achieve flexible and efficient physical problem-solving.

Citations (96)

Summary

We haven't generated a summary for this paper yet.