Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning piecewise Lipschitz functions in changing environments (1907.09137v4)

Published 22 Jul 2019 in cs.LG and stat.ML

Abstract: Optimization in the presence of sharp (non-Lipschitz), unpredictable (w.r.t. time and amount) changes is a challenging and largely unexplored problem of great significance. We consider the class of piecewise Lipschitz functions, which is the most general online setting considered in the literature for the problem, and arises naturally in various combinatorial algorithm selection problems where utility functions can have sharp discontinuities. The usual performance metric of $\mathit{static}$ regret minimizes the gap between the payoff accumulated and that of the best fixed point for the entire duration, and thus fails to capture changing environments. Shifting regret is a useful alternative, which allows for up to $s$ environment shifts. In this work we provide an $O(\sqrt{sdT\log T}+sT{1-\beta})$ regret bound for $\beta$-dispersed functions, where $\beta$ roughly quantifies the rate at which discontinuities appear in the utility functions in expectation (typically $\beta\ge1/2$ in problems of practical interest). We also present a lower bound tight up to sub-logarithmic factors. We further obtain improved bounds when selecting from a small pool of experts. We empirically demonstrate a key application of our algorithms to online clustering problems on popular benchmarks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.