Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Short-term Electric Load Forecasting Using TensorFlow and Deep Auto-Encoders (1907.08941v1)

Published 21 Jul 2019 in eess.SP, cs.SY, and eess.SY

Abstract: This paper conducts research on the short-term electric load forecast method under the background of big data. It builds a new electric load forecast model based on Deep Auto-Encoder Networks (DAENs), which takes into account multidimensional load-related data sets including historical load value, temperature, day type, etc. A new distributed short-term load forecast method based on TensorFlow and DAENs is therefore proposed, with an algorithm flowchart designed. This method overcomes the shortcomings of traditional neural network methods, such as over-fitting, slow convergence and local optimum, etc. Case study results show that the proposed method has obvious advantages in prediction accuracy, stability, and expansibility compared with those based on traditional neural networks. Thus, this model can better meet the demands of short-term electric load forecasting under big data scenario.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Xin Shi (48 papers)

Summary

We haven't generated a summary for this paper yet.