Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

What is this Article about? Extreme Summarization with Topic-aware Convolutional Neural Networks (1907.08722v1)

Published 19 Jul 2019 in cs.CL

Abstract: We introduce 'extreme summarization', a new single-document summarization task which aims at creating a short, one-sentence news summary answering the question ``What is the article about?''. We argue that extreme summarization, by nature, is not amenable to extractive strategies and requires an abstractive modeling approach. In the hope of driving research on this task further: (a) we collect a real-world, large scale dataset by harvesting online articles from the British Broadcasting Corporation (BBC); and (b) propose a novel abstractive model which is conditioned on the article's topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans on the extreme summarization dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shashi Narayan (35 papers)
  2. Shay B. Cohen (78 papers)
  3. Mirella Lapata (135 papers)
Citations (17)