Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the motive of the Quot scheme of finite quotients of a locally free sheaf (1907.08123v2)

Published 18 Jul 2019 in math.AG

Abstract: Let $X$ be a smooth variety, $E$ a locally free sheaf on $X$. We express the generating function of the motives $[\textrm{Quot}X(E,n)]$ in terms of the power structure on the Grothendieck ring of varieties. This extends a recent result of Bagnarol, Fantechi and Perroni for curves, and a result of Gusein-Zade, Luengo and Melle-Hern\'{a}ndez for Hilbert schemes. We compute this generating function for curves and we express the relative motive $[\textrm{Quot}{\mathbb Ad}(\mathscr{O}{\oplus r}) \to \textrm{Sym}\, \mathbb Ad]$ as a plethystic exponential.

Summary

We haven't generated a summary for this paper yet.