Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Makespan Minimization with OR-Precedence Constraints (1907.08111v2)

Published 18 Jul 2019 in cs.DM and cs.DS

Abstract: We consider a variant of the NP-hard problem of assigning jobs to machines to minimize the completion time of the last job. Usually, precedence constraints are given by a partial order on the set of jobs, and each job requires all its predecessors to be completed before it can start. In his seminal paper, Graham (1966) presented a simple 2-approximation algorithm, and, more than 40 years later, Svensson (2010) proved that 2 is essentially the best approximation ratio one can hope for in general. In this paper, we consider a different type of precedence relation that has not been discussed as extensively and is called OR-precedence. In order for a job to start, we require that at least one of its predecessors is completed - in contrast to all its predecessors. Additionally, we assume that each job has a release date before which it must not start. We prove that Graham's algorithm has an approximation guarantee of 2 also in this setting, and present a polynomial-time algorithm that solves the problem to optimality, if preemptions are allowed. The latter result is in contrast to classical precedence constraints, for which ULLMan (1975) showed that the preemptive variant is already NP-hard. Our algorithm generalizes a result of Johannes (2005) who gave a polynomial-time algorithm for unit processing time jobs subject to OR-precedence constraints, but without release dates. The performance guarantees presented here match the best-known ones for special cases where classical precedence constraints and OR-precedence constraints coincide.

Citations (5)

Summary

We haven't generated a summary for this paper yet.