Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Human Annotation Errors to Design Bias-Aware Systems for Social Stream Processing (1907.07228v1)

Published 16 Jul 2019 in cs.SI and cs.LG

Abstract: High-quality human annotations are necessary to create effective machine learning systems for social media. Low-quality human annotations indirectly contribute to the creation of inaccurate or biased learning systems. We show that human annotation quality is dependent on the ordering of instances shown to annotators (referred as 'annotation schedule'), and can be improved by local changes in the instance ordering provided to the annotators, yielding a more accurate annotation of the data stream for efficient real-time social media analytics. We propose an error-mitigating active learning algorithm that is robust with respect to some cases of human errors when deciding an annotation schedule. We validate the human error model and evaluate the proposed algorithm against strong baselines by experimenting on classification tasks of relevant social media posts during crises. According to these experiments, considering the order in which data instances are presented to human annotators leads to both an increase in accuracy for machine learning and awareness toward some potential biases in human learning that may affect the automated classifier.

Citations (12)

Summary

We haven't generated a summary for this paper yet.