Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-Resolution Channel Estimation for Arbitrary Arrays in Hybrid Millimeter-Wave Massive MIMO Systems (1907.07206v1)

Published 16 Jul 2019 in eess.SP

Abstract: This paper develops efficient channel estimation techniques for millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) systems under practical hardware limitations, including an arbitrary array geometry and a hybrid hardware structure. Taking on an angle-based approach, this work adopts a generalized array manifold separation approach via Jacobi-Anger approximation, which transforms a non-ideal, non-uniform array manifold into a virtual array domain with a desired uniform geometric structure to facilitate super-resolution angle estimation and channel acquisition. Accordingly, structure-based optimization techniques are developed to effectively estimate both the channel covariance and the instantaneous channel state information (CSI) within a short sensing time. In particular, the difference in time-variation of channel path angles and path gains is capitalized to design a two-step CSI estimation scheme that can quickly sense fading channels. Theoretical results are provided on the fundamental limits of the proposed technique in terms of sample efficiency. For computational efficiency, a fast iterative algorithm is developed via the alternating direction method of multipliers. Other related issues such as spurious-peak cancellation in nonuniform linear arrays and extensions to higher-dimensional cases are also discussed. Simulations testify the effectiveness of the proposed approaches in hybrid mmWave massive MIMO systems with arbitrary arrays.

Summary

We haven't generated a summary for this paper yet.