Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lossless Prioritized Embeddings (1907.06983v1)

Published 16 Jul 2019 in cs.DS

Abstract: Given metric spaces $(X,d)$ and $(Y,\rho)$ and an ordering $x_1,x_2,\ldots,x_n$ of $(X,d)$, an embedding $f: X \rightarrow Y$ is said to have a prioritized distortion $\alpha(\cdot)$, if for any pair $x_j,x'$ of distinct points in $X$, the distortion provided by $f$ for this pair is at most $\alpha(j)$. If $Y$ is a normed space, the embedding is said to have prioritized dimension $\beta(\cdot)$, if $f(x_j)$ may have nonzero entries only in its first $\beta(j)$ coordinates. The notion of prioritized embedding was introduced by \cite{EFN15}, where a general methodology for constructing such embeddings was developed. Though this methodology enables \cite{EFN15} to come up with many prioritized embeddings, it typically incurs some loss in the distortion. This loss is problematic for isometric embeddings. It is also troublesome for Matousek's embedding of general metrics into $\ell_\infty$, which for a parameter $k = 1,2,\ldots$, provides distortion $2k-1$ and dimension $O(k \log n \cdot n{1/k})$. In this paper we devise two lossless prioritized embeddings. The first one is an isometric prioritized embedding of tree metrics into $\ell_\infty$ with dimension $O(\log j)$. The second one is a prioritized Matousek's embedding of general metrics into $\ell_\infty$, which provides prioritized distortion $2 \lceil k {{\log j} \over {\log n}} \rceil - 1$ and dimension $O(k \log n \cdot n{1/k})$, again matching the worst-case guarantee $2k-1$ in the distortion of the classical Matousek's embedding. We also provide a dimension-prioritized variant of Matousek's embedding. Finally, we devise prioritized embeddings of general metrics into (single) ultra-metric and of general graphs into (single) spanning tree with asymptotically optimal distortion.

Citations (5)

Summary

We haven't generated a summary for this paper yet.