Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low-supervision urgency detection and transfer in short crisis messages (1907.06745v1)

Published 15 Jul 2019 in cs.CL, cs.LG, and cs.SI

Abstract: Humanitarian disasters have been on the rise in recent years due to the effects of climate change and socio-political situations such as the refugee crisis. Technology can be used to best mobilize resources such as food and water in the event of a natural disaster, by semi-automatically flagging tweets and short messages as indicating an urgent need. The problem is challenging not just because of the sparseness of data in the immediate aftermath of a disaster, but because of the varying characteristics of disasters in developing countries (making it difficult to train just one system) and the noise and quirks in social media. In this paper, we present a robust, low-supervision social media urgency system that adapts to arbitrary crises by leveraging both labeled and unlabeled data in an ensemble setting. The system is also able to adapt to new crises where an unlabeled background corpus may not be available yet by utilizing a simple and effective transfer learning methodology. Experimentally, our transfer learning and low-supervision approaches are found to outperform viable baselines with high significance on myriad disaster datasets.

Citations (12)

Summary

We haven't generated a summary for this paper yet.