Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Overcoming the curse of dimensionality in the numerical approximation of Allen-Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations (1907.06729v1)

Published 15 Jul 2019 in math.NA, cs.NA, and math.AP

Abstract: One of the most challenging problems in applied mathematics is the approximate solution of nonlinear partial differential equations (PDEs) in high dimensions. Standard deterministic approximation methods like finite differences or finite elements suffer from the curse of dimensionality in the sense that the computational effort grows exponentially in the dimension. In this work we overcome this difficulty in the case of reaction-diffusion type PDEs with a locally Lipschitz continuous coervice nonlinearity (such as Allen-Cahn PDEs) by introducing and analyzing truncated variants of the recently introduced full-history recursive multilevel Picard approximation schemes.

Citations (46)

Summary

We haven't generated a summary for this paper yet.