Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparison Between Algebraic and Matrix-free Geometric Multigrid for a Stokes Problem on Adaptive Meshes with Variable Viscosity (1907.06696v4)

Published 15 Jul 2019 in math.NA and cs.NA

Abstract: Problems arising in Earth's mantle convection involve finding the solution to Stokes systems with large viscosity contrasts. These systems contain localized features which, even with adaptive mesh refinement, result in linear systems that can be on the order of 109 or more unknowns. One common approach for preconditioning to the velocity block of these systems is to apply an Algebraic Multigrid (AMG) v-cycle (as is done in the ASPECT software, for example), however, with AMG, robustness can be difficult with respect to problem size and number of parallel processes. Additionally, we see an increase in iteration counts with adaptive refinement when using AMG. In contrast, the Geometric Multigrid (GMG) method, by using information about the geometry of the problem, should offer a more robust option. Here we present a matrix-free GMG v-cycle which works on adaptively refined, distributed meshes, and we will compare it against the current AMG preconditioner (Trilinos ML) used in the ASPECT software. We will demonstrate the robustness of GMG with respect to problem size and show scaling up to 114688 cores and $217$ billion unknowns. All computations are run using the open source, finite element library deal.ii.

Citations (20)

Summary

We haven't generated a summary for this paper yet.