Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Neural Turing~Machine for Conditional Transition Graph Modeling (1907.06432v1)

Published 15 Jul 2019 in cs.AI and cs.IR

Abstract: Graphs are an essential part of many machine learning problems such as analysis of parse trees, social networks, knowledge graphs, transportation systems, and molecular structures. Applying machine learning in these areas typically involves learning the graph structure and the relationship between the nodes of the graph. However, learning the graph structure is often complex, particularly when the graph is cyclic, and the transitions from one node to another are conditioned such as graphs used to represent a finite state machine. To solve this problem, we propose to extend the memory based Neural Turing Machine (NTM) with two novel additions. We allow for transitions between nodes to be influenced by information received from external environments, and we let the NTM learn the context of those transitions. We refer to this extension as the Conditional Neural Turing Machine (CNTM). We show that the CNTM can infer conditional transition graphs by empirically verifiying the model on two data sets: a large set of randomly generated graphs, and a graph modeling the information retrieval process during certain crisis situations. The results show that the CNTM is able to reproduce the paths inside the graph with accuracy ranging from 82,12% for 10 nodes graphs to 65,25% for 100 nodes graphs.

Summary

We haven't generated a summary for this paper yet.