2000 character limit reached
Flag-transitive non-symmetric $2$-designs with $(r,λ)=1$ and exceptional groups of Lie type (1907.06425v1)
Published 15 Jul 2019 in math.CO and math.GR
Abstract: This paper determined all pairs $(\mathcal{D},G)$ where $\mathcal{D}$ is a non-symmetric 2-$(v,k,\lambda)$ design with $(r,\lambda)=1$ and $G$ is the almost simple flag-transitive automorphism group of $\mathcal{D}$ with an exceptional socle of Lie type. We prove that if $T\trianglelefteq G\leq Aut(T)$ where $T$ is an exceptional group of Lie type, then $T$ must be the Ree group or Suzuki group, and there are five classes of non-isomorphic designs $\mathcal{D}$.