Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Concept-Centric Visual Turing Tests for Method Validation (1907.06414v2)

Published 15 Jul 2019 in cs.LG, eess.IV, and stat.ML

Abstract: Recent advances in machine learning for medical imaging have led to impressive increases in model complexity and overall capabilities. However, the ability to discern the precise information a machine learning method is using to make decisions has lagged behind and it is often unclear how these performances are in fact achieved. Conventional evaluation metrics that reduce method performance to a single number or a curve only provide limited insights. Yet, systems used in clinical practice demand thorough validation that such crude characterizations miss. To this end, we present a framework to evaluate classification methods based on a number of interpretable concepts that are crucial for a clinical task. Our approach is inspired by the Turing Test concept and how to devise a test that adaptively questions a method for its ability to interpret medical images. To do this, we make use of a Twenty Questions paradigm whereby we use a probabilistic model to characterize the method's capacity to grasp task-specific concepts, and we introduce a strategy to sequentially query the method according to its previous answers. The results show that the probabilistic model is able to expose both the dataset's and the method's biases, and can be used to reduced the number of queries needed for confident performance evaluation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.