Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local Distribution Obfuscation via Probability Coupling (1907.05991v2)

Published 13 Jul 2019 in cs.CR, cs.DB, cs.IT, cs.LG, and math.IT

Abstract: We introduce a general model for the local obfuscation of probability distributions by probabilistic perturbation, e.g., by adding differentially private noise, and investigate its theoretical properties. Specifically, we relax a notion of distribution privacy (DistP) by generalizing it to divergence, and propose local obfuscation mechanisms that provide divergence distribution privacy. To provide f-divergence distribution privacy, we prove that probabilistic perturbation noise should be added proportionally to the Earth mover's distance between the probability distributions that we want to make indistinguishable. Furthermore, we introduce a local obfuscation mechanism, which we call a coupling mechanism, that provides divergence distribution privacy while optimizing the utility of obfuscated data by using exact/approximate auxiliary information on the input distributions we want to protect.

Citations (7)

Summary

We haven't generated a summary for this paper yet.