Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymmetric unimodal maps with non-universal period-doubling scaling laws (1907.05812v2)

Published 12 Jul 2019 in math.DS

Abstract: We consider a family of strongly-asymmetric unimodal maps ${f_t}{t\in [0,1]}$ of the form $f_t=t\cdot f$ where $f\colon [0,1]\to [0,1]$ is unimodal, $f(0)=f(1)=0$, $f(c)=1$ is of the form and $$f(x)=\left{ \begin{array}{ll} 1-K-|x-c|+o(|x-c|)& \mbox{ for }x<c, \\ 1-K_+|x-c|^\beta + o(|x-c|^\beta) &\mbox{ for }x>c, \end{array}\right. $$ where we assume that $\beta>1$. We show that such a family contains a Feigenbaum-Coullet-Tresser $2\infty$ map, and develop a renormalization theory for these maps. The scalings of the renormalization intervals of the $2\infty$ map turn out to be super-exponential and non-universal (i.e. to depend on the map) and the scaling-law is different for odd and even steps of the renormalization. The conjugacy between the attracting Cantor sets of two such maps is smooth if and only if some invariant is satisfied. We also show that the Feigenbaum-Coullet-Tresser map does not have wandering intervals, but surprisingly we were only able to prove this using our rather detailed scaling results.

Summary

We haven't generated a summary for this paper yet.