Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning with ConvNET Predicts Imagery Tasks Through EEG (1907.05674v1)

Published 12 Jul 2019 in eess.SP, cs.HC, and cs.LG

Abstract: Deep learning with convolutional neural networks (ConvNets) have dramatically improved learning capabilities of computer vision applications just through considering raw data without any prior feature extraction. Nowadays, there is rising curiosity in interpreting and analyzing electroencephalography (EEG) dynamics with ConvNets. Our study focused on ConvNets of different structures, constructed for predicting imagined left and right movements on a subject-independent basis through raw EEG data. Results showed that recently advanced methods in machine learning field, i.e. adaptive moments and batch normalization together with dropout strategy, improved ConvNets predicting ability, outperforming that of conventional fully-connected neural networks with widely-used spectral features.

Citations (27)

Summary

We haven't generated a summary for this paper yet.