Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Laplacian-regularized graph bandits: Algorithms and theoretical analysis (1907.05632v3)

Published 12 Jul 2019 in cs.LG and stat.ML

Abstract: We consider a stochastic linear bandit problem with multiple users, where the relationship between users is captured by an underlying graph and user preferences are represented as smooth signals on the graph. We introduce a novel bandit algorithm where the smoothness prior is imposed via the random-walk graph Laplacian, which leads to a single-user cumulative regret scaling as $\tilde{\mathcal{O}}(\Psi d \sqrt{T})$ with time horizon $T$, feature dimensionality $d$, and the scalar parameter $\Psi \in (0,1)$ that depends on the graph connectivity. This is an improvement over $\tilde{\mathcal{O}}(d \sqrt{T})$ in \algo{LinUCB}~\Ccite{li2010contextual}, where user relationship is not taken into account. In terms of network regret (sum of cumulative regret over $n$ users), the proposed algorithm leads to a scaling as $\tilde{\mathcal{O}}(\Psi d\sqrt{nT})$, which is a significant improvement over $\tilde{\mathcal{O}}(nd\sqrt{T})$ in the state-of-the-art algorithm \algo{Gob.Lin} \Ccite{cesa2013gang}. To improve scalability, we further propose a simplified algorithm with a linear computational complexity with respect to the number of users, while maintaining the same regret. Finally, we present a finite-time analysis on the proposed algorithms, and demonstrate their advantage in comparison with state-of-the-art graph-based bandit algorithms on both synthetic and real-world data.

Citations (17)

Summary

We haven't generated a summary for this paper yet.