Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A higher order perturbation approach for electromagnetic scattering problems on random domains (1907.05501v1)

Published 11 Jul 2019 in math.NA and cs.NA

Abstract: We consider time-harmonic electromagnetic scattering problems on perfectly conducting scatterers with uncertain shape. Thus, the scattered field will also be uncertain. Based on the knowledge of the two-point correlation of the domain boundary variations around a reference domain, we derive a perturbation analysis for the mean of the scattered field. Therefore, we compute the second shape derivative of the scattering problem for a single perturbation. Taking the mean, this leads to an at least third order accurate approximation with respect to the perturbation amplitude of the domain variations. To compute the required second order correction term, a tensor product equation on the domain boundary has to be solved. We discuss its discretization and efficient solution using boundary integral equations. Numerical experiments in three dimensions are presented.

Citations (8)

Summary

We haven't generated a summary for this paper yet.