Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparison of Super-Resolution and Nearest Neighbors Interpolation Applied to Object Detection on Satellite Data (1907.05283v1)

Published 8 Jul 2019 in cs.CV, cs.LG, eess.IV, and stat.ML

Abstract: As Super-Resolution (SR) has matured as a research topic, it has been applied to additional topics beyond image reconstruction. In particular, combining classification or object detection tasks with a super-resolution preprocessing stage has yielded improvements in accuracy especially with objects that are small relative to the scene. While SR has shown promise, a study comparing SR and naive upscaling methods such as Nearest Neighbors (NN) interpolation when applied as a preprocessing step for object detection has not been performed. We apply the topic to satellite data and compare the Multi-scale Deep Super-Resolution (MDSR) system to NN on the xView challenge dataset. To do so, we propose a pipeline for processing satellite data that combines multi-stage image tiling and upscaling, the YOLOv2 object detection architecture, and label stitching. We compare the effects of training models using an upscaling factor of 4, upscaling images from 30cm Ground Sample Distance (GSD) to an effective GSD of 7.5cm. Upscaling by this factor significantly improves detection results, increasing Average Precision (AP) of a generalized vehicle class by 23 percent. We demonstrate that while SR produces upscaled images that are more visually pleasing than their NN counterparts, object detection networks see little difference in accuracy with images upsampled using NN obtaining nearly identical results to the MDSRx4 enhanced images with a difference of 0.0002 AP between the two methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Evan Koester (1 paper)
  2. Cem Safak Sahin (2 papers)
Citations (10)

Summary

We haven't generated a summary for this paper yet.