Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the minimum value of the Colless index and the bifurcating trees that achieve it

Published 11 Jul 2019 in q-bio.PE, cs.DM, and math.CO | (1907.05064v2)

Abstract: Measures of tree balance play an important role in the analysis of phylogenetic trees. One of the oldest and most popular indices in this regard is the Colless index for rooted bifurcating trees, introduced by Colless (1982). While many of its statistical properties under different probabilistic models for phylogenetic trees have already been established, little is known about its minimum value and the trees that achieve it. In this manuscript, we fill this gap in the literature. To begin with, we derive both recursive and closed expressions for the minimum Colless index of a tree with $n$ leaves. Surprisingly, these expressions show a connection between the minimum Colless index and the so-called Blancmange curve, a fractal curve. We then fully characterize the tree shapes that achieve this minimum value and we introduce both an algorithm to generate them and a recurrence to count them. After focusing on two extremal classes of trees with minimum Colless index (the maximally balanced trees and the greedy from the bottom trees), we conclude by showing that all trees with minimum Colless index also have minimum Sackin index, another popular balance index.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.