2000 character limit reached
Integer Laplacian Eigenvalues of Chordal Graphs (1907.04979v1)
Published 11 Jul 2019 in cs.DM and math.CO
Abstract: In this paper, structural properties of chordal graphs are analysed, in order to establish a relationship between these structures and integer Laplacian eigenvalues. We present the characterization of chordal graphs with equal vertex and algebraic connectivities, by means of the vertices that compose the minimal vertex separators of the graph; we stablish a sufficient condition for the cardinality of a maximal clique to appear as an integer Laplacian eigenvalue. Finally, we review two subclasses of chordal graphs, showing for them some new properties.
- Nair Maria Maia de Abreu (2 papers)
- Claudia Marcela Justel (3 papers)
- Lilian Markenzon (5 papers)