Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limit (1907.04610v4)

Published 10 Jul 2019 in math.NA and cs.NA

Abstract: Kinetic equations model distributions of particles in position-velocity phase space. Often, one is interested in studying the long-time behavior of particles in high-collisional regimes in which an approximate (advection)-diffusion model holds. In this paper we consider the diffusive scaling. Classical particle-based techniques suffer from a strict time-step restriction in this limit, to maintain stability. Asymptotic-preserving schemes avoid this problem, but introduce an additional time discretization error, possibly resulting in an unacceptably large bias for larger time steps. Here, we present and analyze a multilevel Monte Carlo scheme that reduces this bias by combining estimates using a hierarchy of different time step sizes. We demonstrate how to correlate trajectories from this scheme, using different time steps. We also present a strategy for selecting the levels in the multilevel scheme. Our approach significantly reduces the computation required to perform accurate simulations of the considered kinetic equations, compared to classical Monte Carlo approaches.

Citations (9)

Summary

We haven't generated a summary for this paper yet.