Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A note on the boundary behaviour of the squeezing function and Fridman invariant (1907.04528v1)

Published 10 Jul 2019 in math.CV

Abstract: Let $\Omega$ be a domain in $\mathbb Cn$. Suppose that $\partial\Omega$ is smooth pseudoconvex of D'Angelo finite type near a boundary point $\xi_0\in \partial\Omega$ and the Levi form has corank at most $1$ at $\xi_0$. Our goal is to show that if the squeezing function $s_\Omega(\eta_j)$ tends to $1$ or the Fridman invariant $h_\Omega(\eta_j)$ tends to $0$ for some sequence ${\eta_j}\subset \Omega$ converging to $\xi_0$, then this point must be strongly pseudoconvex.

Summary

We haven't generated a summary for this paper yet.