Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple Knapsack-Constrained Monotone DR-Submodular Maximization on Distributive Lattice --- Continuous Greedy Algorithm on Median Complex --- (1907.04279v1)

Published 9 Jul 2019 in cs.DS

Abstract: We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Since a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a $1 - 1/e$ approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of a distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions, such that the multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property of the continuous greedy algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.