Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A spectral bound on hypergraph discrepancy (1907.04117v5)

Published 7 Jul 2019 in math.CO, cs.DM, and cs.DS

Abstract: Let $\mathcal{H}$ be a $t$-regular hypergraph on $n$ vertices and $m$ edges. Let $M$ be the $m \times n$ incidence matrix of $\mathcal{H}$ and let us denote $\lambda =\max_{v \perp \overline{1},|v| = 1}|Mv|$. We show that the discrepancy of $\mathcal{H}$ is $O(\sqrt{t} + \lambda)$. As a corollary, this gives us that for every $t$, the discrepancy of a random $t$-regular hypergraph with $n$ vertices and $m \geq n$ edges is almost surely $O(\sqrt{t})$ as $n$ grows. The proof also gives a polynomial time algorithm that takes a hypergraph as input and outputs a coloring with the above guarantee.

Citations (8)

Summary

We haven't generated a summary for this paper yet.