Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Searching for Effective Neural Extractive Summarization: What Works and What's Next (1907.03491v1)

Published 8 Jul 2019 in cs.CL

Abstract: The recent years have seen remarkable success in the use of deep neural networks on text summarization. However, there is no clear understanding of \textit{why} they perform so well, or \textit{how} they might be improved. In this paper, we seek to better understand how neural extractive summarization systems could benefit from different types of model architectures, transferable knowledge and learning schemas. Additionally, we find an effective way to improve current frameworks and achieve the state-of-the-art result on CNN/DailyMail by a large margin based on our observations and analyses. Hopefully, our work could provide more clues for future research on extractive summarization.

Citations (148)

Summary

We haven't generated a summary for this paper yet.