Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The size-Ramsey number of powers of bounded degree trees (1907.03466v2)

Published 8 Jul 2019 in math.CO

Abstract: Given a positive integer $s$, the $s$-colour size-Ramsey number of a graph $H$ is the smallest integer $m$ such that there exists a graph $G$ with $m$ edges with the property that, in any colouring of $E(G)$ with $s$ colours, there is a monochromatic copy of $H$. We prove that, for any positive integers $k$ and $s$, the $s$-colour size-Ramsey number of the $k$th power of any $n$-vertex bounded degree tree is linear in $n$. As a corollary we obtain that the $s$-colour size-Ramsey number of $n$-vertex graphs with bounded treewidth and bounded degree is linear in $n$, which answers a question raised by Kam\v{c}ev, Liebenau, Wood and Yepremyan [The size Ramsey number of graphs with bounded treewidth, arXiv:1906.09185 (2019)].

Citations (19)

Summary

We haven't generated a summary for this paper yet.