Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MRI Super-Resolution with Ensemble Learning and Complementary Priors (1907.03063v1)

Published 6 Jul 2019 in eess.IV, cs.LG, and physics.med-ph

Abstract: Magnetic resonance imaging (MRI) is a widely used medical imaging modality. However, due to the limitations in hardware, scan time, and throughput, it is often clinically challenging to obtain high-quality MR images. The super-resolution approach is potentially promising to improve MR image quality without any hardware upgrade. In this paper, we propose an ensemble learning and deep learning framework for MR image super-resolution. In our study, we first enlarged low resolution images using 5 commonly used super-resolution algorithms and obtained differentially enlarged image datasets with complementary priors. Then, a generative adversarial network (GAN) is trained with each dataset to generate super-resolution MR images. Finally, a convolutional neural network is used for ensemble learning that synergizes the outputs of GANs into the final MR super-resolution images. According to our results, the ensemble learning results outcome any one of GAN outputs. Compared with some state-of-the-art deep learning-based super-resolution methods, our approach is advantageous in suppressing artifacts and keeping more image details.

Citations (91)

Summary

We haven't generated a summary for this paper yet.