Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Restart perturbations for reversible Markov chains: trichotomy and pre-cutoff equivalence (1907.02926v3)

Published 5 Jul 2019 in math.PR and cs.DM

Abstract: Given a reversible Markov chain $P_n$ on $n$ states, and another chain $\tilde{P}_n$ obtained by perturbing each row of $P_n$ by at most $\alpha_n$ in total variation, we study the total variation distance between the two stationary distributions, $| \pi_n - \tilde{\pi}_n |$. We show that for chains with cutoff, $| \pi_n - \tilde{\pi}_n |$ converges to $0$, $e{-c}$, and $1$, respectively, if the product of $\alpha_n$ and the mixing time of $P_n$ converges to $0$, $c$, and $\infty$, respectively. This echoes recent results for specific random walks that exhibit cutoff, suggesting that cutoff is the key property underlying such results. Moreover, we show $| \pi_n - \tilde{\pi}_n |$ is maximized by restart perturbations, for which $\tilde{P}_n$ "restarts" $P_n$ at a random state with probability $\alpha_n$ at each step. Finally, we show that pre-cutoff is (almost) equivalent to a notion of "sensitivity to restart perturbations," suggesting that chains with sharper convergence to stationarity are inherently less robust.

Citations (3)

Summary

We haven't generated a summary for this paper yet.