Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Finite Exchangeability and Conditional Independence (1907.02912v3)

Published 5 Jul 2019 in math.ST, math.PR, stat.OT, and stat.TH

Abstract: We study the independence structure of finitely exchangeable distributions over random vectors and random networks. In particular, we provide necessary and sufficient conditions for an exchangeable vector so that its elements are completely independent or completely dependent. We also provide a sufficient condition for an exchangeable vector so that its elements are marginally independent. We then generalize these results and conditions for exchangeable random networks. In this case, it is demonstrated that the situation is more complex. We show that the independence structure of exchangeable random networks lies in one of six regimes that are two-fold dual to one another, represented by undirected and bidirected independence graphs in graphical model sense with graphs that are complement of each other. In addition, under certain additional assumptions, we provide necessary and sufficient conditions for the exchangeable network distributions to be faithful to each of these graphs.

Summary

We haven't generated a summary for this paper yet.