Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Feature Learning in Multivariate Big Data Analysis for Network Monitoring (1907.02677v3)

Published 5 Jul 2019 in cs.NI, cs.LG, and stat.ML

Abstract: There is an increasing interest in the development of new data-driven models useful to assess the performance of communication networks. For many applications, like network monitoring and troubleshooting, a data model is of little use if it cannot be interpreted by a human operator. In this paper, we present an extension of the Multivariate Big Data Analysis (MBDA) methodology, a recently proposed interpretable data analysis tool. In this extension, we propose a solution to the automatic derivation of features, a cornerstone step for the application of MBDA when the amount of data is massive. The resulting network monitoring approach allows us to detect and diagnose disparate network anomalies, with a data-analysis workflow that combines the advantages of interpretable and interactive models with the power of parallel processing. We apply the extended MBDA to two case studies: UGR'16, a benchmark flow-based real-traffic dataset for anomaly detection, and Dartmouth'18, the longest and largest Wi-Fi trace known to date.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. doi:10.1109/INFCOMW.2014.6849282.
  2. doi:10.1080/13683500.2013.802764.
  3. arXiv:1205.0121v2, doi:10.1198/106186006X113430.
  4. doi:10.1109/TNSM.2019.2933358.
  5. doi:10.1109/BigData50022.2020.9377998.
  6. doi:10.1109/CSNet47905.2019.9108976.
  7. doi:10.1109/ICTON51198.2020.9203310.
  8. doi:10.1109/ACCESS.2021.3067106.
  9. doi:10.17487/RFC9232. URL https://www.rfc-editor.org/info/rfc9232
  10. doi:10.1109/ICNP49622.2020.9259411.
  11. doi:10.1109/TNSM.2020.2971213.
  12. doi:10.1109/TPAMI.2013.50.
  13. doi:10.1109/ICCECE54139.2022.9712708.
  14. doi:10.1109/TETCI.2017.2772792.
  15. doi:10.1016/j.asoc.2019.105721.
  16. doi:10.3390/s20092451.
  17. doi:10.3390/app12105089.
  18. doi:10.1145/2939672.2939754.
  19. doi:10.1109/ICCC.2019.00026.
  20. doi:10.1109/IJCNN48605.2020.9206737.
  21. doi:10.1145/3359786.
  22. doi:10.1109/SSCI47803.2020.9308230.
  23. doi:10.1109/BIBM49941.2020.9313119.
  24. doi:10.1016/j.cose.2016.02.008.
  25. doi:10.1098/rsta.2015.0202.
  26. doi:10.1198/1061860032148. URL http://oro.open.ac.uk/3949/
  27. doi:10.1002/cjce.5450690105.
  28. doi:10.1002/aic.690400809.
  29. doi:10.1080/08982110701621304.
  30. doi:10.1016/j.chemolab.2015.10.006.
  31. doi:10.1016/j.chemolab.2017.12.008.
  32. doi:10.1016/j.chemolab.2015.02.016.
  33. doi:10.1109/TIFS.2019.2894358.
  34. doi:10.1007/s11276-004-4750-0.
  35. doi:10.1016/j.comnet.2008.05.003.
  36. doi:10.20944/preprints202012.0516.v1.
  37. doi:10.1162/089976600300015565.
  38. doi:10.1162/089976601750264965.
  39. doi:10.1145/3133956.3134027.
Citations (1)

Summary

We haven't generated a summary for this paper yet.