Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Validating, Repairing and Refining Heuristic ML Explanations (1907.02509v1)

Published 4 Jul 2019 in cs.LG, cs.AI, and cs.LO

Abstract: Recent years have witnessed a fast-growing interest in computing explanations for Machine Learning (ML) models predictions. For non-interpretable ML models, the most commonly used approaches for computing explanations are heuristic in nature. In contrast, recent work proposed rigorous approaches for computing explanations, which hold for a given ML model and prediction over the entire instance space. This paper extends earlier work to the case of boosted trees and assesses the quality of explanations obtained with state-of-the-art heuristic approaches. On most of the datasets considered, and for the vast majority of instances, the explanations obtained with heuristic approaches are shown to be inadequate when the entire instance space is (implicitly) considered.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com