Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixed-parameter tractability of counting small minimum $(S,T)$-cuts (1907.02353v2)

Published 4 Jul 2019 in cs.CC and cs.DS

Abstract: The parameterized complexity of counting minimum cuts stands as a natural question because Ball and Provan showed its #P-completeness. For any undirected graph $G=(V,E)$ and two disjoint sets of its vertices $S,T$, we design a fixed-parameter tractable algorithm which counts minimum edge $(S,T)$-cuts parameterized by their size $p$. Our algorithm operates on a transformed graph instance. This transformation, called drainage, reveals a collection of at most $n=\left| V \right|$ successive minimum $(S,T)$-cuts $Z_i$. We prove that any minimum $(S,T)$-cut $X$ contains edges of at least one cut $Z_i$. This observation, together with Menger's theorem, allows us to build the algorithm counting all minimum $(S,T)$-cuts with running time $2{O(p2)}n{O(1)}$. Initially dedicated to counting minimum cuts, it can be modified to obtain an FPT sampling of minimum edge $(S,T)$-cuts.

Citations (2)

Summary

We haven't generated a summary for this paper yet.