Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inequalities between Neumann and Dirichlet eigenvalues of Schrödinger operators (1907.02316v3)

Published 4 Jul 2019 in math.SP, math-ph, math.AP, and math.MP

Abstract: Given a Schr\"odinger operator with a real-valued potential on a bounded, convex domain or a bounded interval we prove inequalities between the eigenvalues corresponding to Neumann and Dirichlet boundary conditions, respectively. The obtained inequalities depend partially on monotonicity and convexity properties of the potential. The results are counterparts of classical inequalities for the Laplacian but display some distinction between the one-dimensional case and higher dimensions.

Summary

We haven't generated a summary for this paper yet.