Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding Phase Transitions via Mutual Information and MMSE (1907.02095v1)

Published 3 Jul 2019 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: The ability to understand and solve high-dimensional inference problems is essential for modern data science. This article examines high-dimensional inference problems through the lens of information theory and focuses on the standard linear model as a canonical example that is both rich enough to be practically useful and simple enough to be studied rigorously. In particular, this model can exhibit phase transitions where an arbitrarily small change in the model parameters can induce large changes in the quality of estimates. For this model, the performance of optimal inference can be studied using the replica method from statistical physics but, until recently, it was not known if the resulting formulas were actually correct. In this chapter, we present a tutorial description of the standard linear model and its connection to information theory. We also describe the replica prediction for this model and outline the authors' recent proof that it is exact.

Citations (7)

Summary

We haven't generated a summary for this paper yet.