Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clifford Quantum Cellular Automata: Trivial group in 2D and Witt group in 3D (1907.02075v5)

Published 3 Jul 2019 in quant-ph, cond-mat.str-el, math-ph, and math.MP

Abstract: We study locality preserving automorphisms of operator algebras on $D$-dimensional uniform lattices of prime $p$-dimensional qudits (QCA), specializing in those that are translation invariant (TI) and map every prime $p$-dimensional Pauli matrix to a tensor product of Pauli matrices (Clifford). We associate antihermitian forms of unit determinant over Laurent polynomial rings to TI Clifford QCA with lattice boundaries, and prove that the form determines the QCA up to Clifford circuits and shifts (trivial). It follows that every 2D TI Clifford QCA is trivial since the antihermitian form in this case is always trivial. Further, we prove that for any $D$ the fourth power of any TI Clifford QCA is trivial. We present explicit examples of nontrivial TI Clifford QCA for $D=3$ and any odd prime $p$, and show that the Witt group of the finite field $\mathbb F_p$ is a subgroup of the group $\mathfrak C(D = 3, p)$ of all TI Clifford QCA modulo trivial ones. That is, $\mathfrak C(D = 3, p \equiv 1 \mod 4) \supseteq \mathbb Z_2 \times \mathbb Z_2$ and $\mathfrak C(D = 3, p \equiv 3 \mod 4) \supseteq \mathbb Z_4$. The examples are found by disentangling the ground state of a commuting Pauli Hamiltonian which is constructed by coupling layers of prime dimensional toric codes such that an exposed surface has an anomalous topological order that is not realizable by commuting Pauli Hamiltonians strictly in two dimensions. In an appendix independent of the main body of the paper, we revisit a recent theorem of Freedman and Hastings that any two-dimensional QCA, which is not necessarily Clifford or translation invariant, is a constant depth quantum circuit followed by a shift. We give a more direct proof of the theorem without using any ancillas.

Citations (41)

Summary

We haven't generated a summary for this paper yet.