Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variance Reduction for Matrix Games (1907.02056v2)

Published 3 Jul 2019 in math.OC, cs.DS, and cs.LG

Abstract: We present a randomized primal-dual algorithm that solves the problem $\min_{x} \max_{y} y\top A x$ to additive error $\epsilon$ in time $\mathrm{nnz}(A) + \sqrt{\mathrm{nnz}(A)n}/\epsilon$, for matrix $A$ with larger dimension $n$ and $\mathrm{nnz}(A)$ nonzero entries. This improves the best known exact gradient methods by a factor of $\sqrt{\mathrm{nnz}(A)/n}$ and is faster than fully stochastic gradient methods in the accurate and/or sparse regime $\epsilon \le \sqrt{n/\mathrm{nnz}(A)}$. Our results hold for $x,y$ in the simplex (matrix games, linear programming) and for $x$ in an $\ell_2$ ball and $y$ in the simplex (perceptron / SVM, minimum enclosing ball). Our algorithm combines Nemirovski's "conceptual prox-method" and a novel reduced-variance gradient estimator based on "sampling from the difference" between the current iterate and a reference point.

Citations (60)

Summary

We haven't generated a summary for this paper yet.