Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted distances in scale-free preferential attachment models (1907.01907v2)

Published 3 Jul 2019 in math.PR, cs.SI, math.CO, and physics.soc-ph

Abstract: We study three preferential attachment models where the parameters are such that the asymptotic degree distribution has infinite variance. Every edge is equipped with a non-negative i.i.d. weight. We study the weighted distance between two vertices chosen uniformly at random, the typical weighted distance, and the number of edges on this path, the typical hopcount. We prove that there are precisely two universality classes of weight distributions, called the explosive and conservative class. In the explosive class, we show that the typical weighted distance converges in distribution to the sum of two i.i.d. finite random variables. In the conservative class, we prove that the typical weighted distance tends to infinity, and we give an explicit expression for the main growth term, as well as for the hopcount. Under a mild assumption on the weight distribution the fluctuations around the main term are tight.

Citations (9)

Summary

We haven't generated a summary for this paper yet.