Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Characteristics of Driver Acceleration Behavior and Its Probability Model (1907.01747v2)

Published 3 Jul 2019 in cs.RO, cs.SY, and eess.SY

Abstract: Naturalistic driving data were applied to study driver acceleration behaviour, and a probability model of the driver was proposed. First, the question of whether the database is large enough is resolved using kernel density estimation and Kullback-Liebler divergence. Next, the convergence database is utilised to achieve the bivariate acceleration distribution pattern. Subsequently, two probability models are proposed to explain the pattern. Finally, the statistical characteristics of the acceleration behaviours are studied to verify the probability models. The longitudinal and lateral acceleration behaviours always approximate a similar Pareto distribution. The braking, accelerating, and steering manoeuvres become more intense at first and then less intense as the velocity increases. These behaviours characteristics reveal the mechanism of the quadrangle bivariate acceleration distribution pattern. The bivariate acceleration behaviour of the driver will never reach a circle-shaped pattern. The bivariate Pareto distribution model can be applied to describe the bivariate acceleration behaviour of the driver.

Citations (14)

Summary

We haven't generated a summary for this paper yet.