Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Random Surfer-Pair Models (1907.01420v2)

Published 2 Jul 2019 in cs.SI

Abstract: SimRank is a widely studied link-based similarity measure that is known for its simple, yet powerful philosophy that two nodes are similar if they are referenced by similar nodes. While this philosophy has been the basis of several improvements, there is another useful, albeit less frequently discussed interpretation for SimRank known as the Random Surfer-Pair Model. In this work, we show that other well known measures related to SimRank can also be reinterpreted using Random Surfer-Pair Models, and establish a mathematically sound, general and unifying framework for several link-based similarity measures. This also serves to provide new insights into their functioning and allows for using these measures in a Monte Carlo framework, which provides several computational benefits. Next, we describe how the framework can be used as a versatile tool for developing measures according to given design requirements. As an illustration of this utility, we develop a new measure by combining the benefits of two existing measures under this framework, and empirically demonstrate that it results in a better performing measure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.