Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

New variational characterization of periodic waves in the fractional Korteweg-de Vries equation (1907.01412v3)

Published 2 Jul 2019 in math.AP, math-ph, math.DS, math.MP, and nlin.PS

Abstract: Periodic waves in the fractional Korteweg-de Vries equation have been previously characterized as constrained minimizers of energy subject to fixed momentum and mass. Here we characterize these periodic waves as constrained minimizers of the quadratic form of energy subject to fixed cubic part of energy and the zero mean. This new variational characterization allows us to unfold the existence region of travelling periodic waves and to give a sharp criterion for spectral stability of periodic waves with respect to perturbations of the same period. The sharp stability criterion is given by the monotonicity of the map from the wave speed to the wave momentum similarly to the stability criterion for solitary waves.

Summary

We haven't generated a summary for this paper yet.