Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrated Nested Laplace Approximations (INLA) (1907.01248v1)

Published 2 Jul 2019 in stat.CO

Abstract: This is a short description and basic introduction to the Integrated nested Laplace approximations (INLA) approach. INLA is a deterministic paradigm for Bayesian inference in latent Gaussian models (LGMs) introduced in Rue et al. (2009). INLA relies on a combination of analytical approximations and efficient numerical integration schemes to achieve highly accurate deterministic approximations to posterior quantities of interest. The main benefit of using INLA instead of Markov chain Monte Carlo (MCMC) techniques for LGMs is computational; INLA is fast even for large, complex models. Moreover, being a deterministic algorithm, INLA does not suffer from slow convergence and poor mixing. INLA is implemented in the R package R-INLA, which represents a user-friendly and versatile tool for doing Bayesian inference. R-INLA returns posterior marginals for all model parameters and the corresponding posterior summary information. Model choice criteria as well as predictive diagnostics are directly available. Here, we outline the theory behind INLA, present the R-INLA package and describe new developments of combining INLA with MCMC for models that are not possible to fit with R-INLA.

Citations (47)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com