Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

iPool -- Information-based Pooling in Hierarchical Graph Neural Networks (1907.00832v2)

Published 1 Jul 2019 in cs.LG, cs.SI, and stat.ML

Abstract: With the advent of data science, the analysis of network or graph data has become a very timely research problem. A variety of recent works have been proposed to generalize neural networks to graphs, either from a spectral graph theory or a spatial perspective. The majority of these works however focus on adapting the convolution operator to graph representation. At the same time, the pooling operator also plays an important role in distilling multiscale and hierarchical representations but it has been mostly overlooked so far. In this paper, we propose a parameter-free pooling operator, called iPool, that permits to retain the most informative features in arbitrary graphs. With the argument that informative nodes dominantly characterize graph signals, we propose a criterion to evaluate the amount of information of each node given its neighbors, and theoretically demonstrate its relationship to neighborhood conditional entropy. This new criterion determines how nodes are selected and coarsened graphs are constructed in the pooling layer. The resulting hierarchical structure yields an effective isomorphism-invariant representation of networked data in arbitrary topologies. The proposed strategy is evaluated in terms of graph classification on a collection of public graph datasets, including bioinformatics and social networks, and achieves state-of-the-art performance on most of the datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xing Gao (134 papers)
  2. Hongkai Xiong (75 papers)
  3. Pascal Frossard (194 papers)
Citations (40)

Summary

We haven't generated a summary for this paper yet.