Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-stage Optimization for Machine Learning Workflow (1907.00678v1)

Published 1 Jul 2019 in cs.LG and cs.AI

Abstract: Machines learning techniques plays a preponderant role in dealing with massive amount of data and are employed in almost every possible domain. Building a high quality machine learning model to be deployed in production is a challenging task, from both, the subject matter experts and the machine learning practitioners. For a broader adoption and scalability of machine learning systems, the construction and configuration of machine learning workflow need to gain in automation. In the last few years, several techniques have been developed in this direction, known as autoML. In this paper, we present a two-stage optimization process to build data pipelines and configure machine learning algorithms. First, we study the impact of data pipelines compared to algorithm configuration in order to show the importance of data preprocessing over hyperparameter tuning. The second part presents policies to efficiently allocate search time between data pipeline construction and algorithm configuration. Those policies are agnostic from the metaoptimizer. Last, we present a metric to determine if a data pipeline is specific or independent from the algorithm, enabling fine-grain pipeline pruning and meta-learning for the coldstart problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Alexandre Quemy (6 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.