Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Predicting video saliency using crowdsourced mouse-tracking data (1907.00480v1)

Published 30 Jun 2019 in cs.CV

Abstract: This paper presents a new way of getting high-quality saliency maps for video, using a cheaper alternative to eye-tracking data. We designed a mouse-contingent video viewing system which simulates the viewers' peripheral vision based on the position of the mouse cursor. The system enables the use of mouse-tracking data recorded from an ordinary computer mouse as an alternative to real gaze fixations recorded by a more expensive eye-tracker. We developed a crowdsourcing system that enables the collection of such mouse-tracking data at large scale. Using the collected mouse-tracking data we showed that it can serve as an approximation of eye-tracking data. Moreover, trying to increase the efficiency of collected mouse-tracking data we proposed a novel deep neural network algorithm that improves the quality of mouse-tracking saliency maps.

Citations (4)

Summary

We haven't generated a summary for this paper yet.