Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant differential characters and Chern-Simons bundles (1907.00292v3)

Published 29 Jun 2019 in math-ph and math.MP

Abstract: We construct Chern-Simons bundles as $\mathrm{Aut}{+}P$-equivariant $U(1)$ -bundles with connection over the space of connections $\mathcal{A}_{P}$ on a principal $G$-bundle $P\rightarrow M$. We show that the Chern-Simons bundles are determined up to an isomorphisms by means of its equivariant holonomy. The space of equivariant holonomies is shown to coincide with the space of equivariant differential characteres of second order. Furthermore, we prove that the Chern-Simons theory provides, in a natural way, an equivariant differential character that determines the Chern-Simons bundles. Our construction can be applied in the case in which $M$ is a compact manifold of even dimension and for arbitrary bundle $P$ and group $G$. The results are also generalized to the case of the action of diffeomorphisms on the space of Riemannian metrics. In particular, in dimension $2$ a Chern-Simons bundle over the Teichm\"{u}ller space is obtained.

Summary

We haven't generated a summary for this paper yet.