Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A linearly implicit structure-preserving scheme for the Camassa-Holm equation based on multiple scalar auxiliary variables approach (1907.00167v2)

Published 29 Jun 2019 in math.NA and cs.NA

Abstract: In this paper, we present a linearly implicit energy-preserving scheme for the Camassa-Holm equation by using the multiple scalar auxiliary variables approach, which is first developed to construct efficient and robust energy stable schemes for gradient systems. The Camassa-Holm equation is first reformulated into an equivalent system by utilizing the multiple scalar auxiliary variables approach, which inherits a modified energy. Then, the system is discretized in space aided by the standard Fourier pseudo-spectral method and a semi-discrete system is obtained, which is proven to preserve a semi-discrete modified energy. Subsequently, the linearized Crank-Nicolson method is applied for the resulting semi-discrete system to arrive at a fully discrete scheme. The main feature of the new scheme is to form a linear system with a constant coefficient matrix at each time step and produce numerical solutions along which the modified energy is precisely conserved, as is the case with the analytical solution. Several numerical results are addressed to confirm accuracy and efficiency of the proposed scheme.

Citations (24)

Summary

We haven't generated a summary for this paper yet.