Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Markov models via low-rank optimization (1907.00113v2)

Published 28 Jun 2019 in stat.ME and stat.ML

Abstract: Modeling unknown systems from data is a precursor of system optimization and sequential decision making. In this paper, we focus on learning a Markov model from a single trajectory of states. Suppose that the transition model has a small rank despite of having a large state space, meaning that the system admits a low-dimensional latent structure. We show that one can estimate the full transition model accurately using a trajectory of length that is proportional to the total number of states. We propose two maximum likelihood estimation methods: a convex approach with nuclear-norm regularization and a nonconvex approach with rank constraint. We explicitly derive the statistical rates of both estimators in terms of the Kullback-Leiber divergence and the $\ell_2$ error and also establish a minimax lower bound to assess the tightness of these rates. For computing the nonconvex estimator, we develop a novel DC (difference of convex function) programming algorithm that starts with the convex M-estimator and then successively refines the solution till convergence. Empirical experiments demonstrate consistent superiority of the nonconvex estimator over the convex one.

Citations (18)

Summary

We haven't generated a summary for this paper yet.